翻訳と辞書
Words near each other
・ Goozex
・ GOP (disambiguation)
・ GOP Varieté Essen
・ Gop, Odisha
・ Gop-e-Rah
・ Gopa Periyadan
・ Gopa Rashtra
・ Gopabandhu Das
・ GOPAC
・ Gopad River
・ GoPago
・ Gopaipali
・ Gopakapattana
・ Gopakumar R. P.
・ Gopakumar Thiruvancheril
Gopakumar–Vafa invariant
・ Gopal (Krishna)
・ Gopal Balakrishnan
・ Gopal Ballav Pattanaik
・ Gopal Bansa
・ Gopal Baratham
・ Gopal Bhar
・ Gopal Bhargava
・ Gopal Bhatnagar
・ Gopal Bose
・ Gopal Chandra Bhattacharya
・ Gopal Chandra Mukhopadhyay
・ Gopal Chhotray
・ Gopal Das Shrestha
・ Gopal Ganesh Agarkar


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Gopakumar–Vafa invariant : ウィキペディア英語版
Gopakumar–Vafa invariant

In theoretical physics Rajesh Gopakumar and Cumrun Vafa introduced new topological invariants, which named Gopakumar–Vafa invariant, that represent the number of BPS states on Calabi–Yau 3-fold, in a series of papers. (see , and also see , .) They lead the following formula generating function for the Gromov–Witten invariant on Calabi–Yau 3-fold ''M''.
:\sum_ GW(g,\beta)q^\lambda^=\sum_BPS(r,\beta)\frac\left(2\sin\left(\frac\right)^q^\right)
where GW(g,\beta) is Gromov–Witten invariant, \beta the number of pseudoholomorphic curves with genus ''g'' and BPS(r,\beta) the number of the BPS states.
== As a partition function in topological quantum field theory ==
Gopakumar–Vafa invariants can be viewed as a partition function in topological quantum field theory. They are proposed to be the partition function in Gopakumar–Vafa form:
:Z_=\exp\left(k>0,\ r\ge0,\\ \beta\in H^2(M,\mathbb)\end}BPS(r,\beta)\frac\left(2\sin\left(\frac\right)^q^\right)\right )\ .

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Gopakumar–Vafa invariant」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.